Data Science Campus Machine Learning • • • • • • for • • • • • • • • **Social Surveys LCF/SLC/HFS Claus Sthamer** •••• **Technical Project Lead** • 26th January 2022

Machine Learning is used to identify rules and patterns in data humans can not.

Example: How to recognise a cat

But not just one cat but all cats. What are the rules?

A ML algorithm can learn from pictures as long we tell it (Labels) what they are

ML can make an inference of the class of new pictures, it gives a score for the most likely class

The HFS and it's component Surveys

Survey Specific Editing (Currently in Production)

Editing: Identifying records that need values changed or missing values inserted

- LCF all cases go through clerical editing Speed &Cost? too slow and too labour intensive **Over Editing?**
- SLC Scripted outlier detection (range of values)
- Only about 50% (?) of changes that are made with the LCF method are made with the SLC method Accuracy?

ML

• WAS – Scripted outlier detection (range of values) **Accuracy?**

Editing of LCF income data with ML

LCF Editing Instructions for Income → extensive manual Editing → Ground Truth 5 most often changed Independent Variables:

Results of 2912 LCF Test Cases – What is good enough?

Battle between Recall and Precision, they can't both be 100%

Prediction Threshold	20%	25%	30%	35%	40%	45%	50%	Exp v62.1
Recall	95.7%	94.0%	91.8%	88.9%	84.2%	81.0%	77.4%	
Precision	37.0%	41.3%	47.5%	55.1%	61.8%	69.8%	77.4%	
F1-Score	53.3%	57.4%	62.6%	68.0%	71.3%	75.0%	77.4%	
ТР	352	346	338	327	310	298	285	
FP	600	491	374	267	192	129	83	
			327	//368 = 88.9	%			

If prediction score > Threshold \rightarrow Case belongs to the Change Class

Objective:

- 1. Find as many True Positive (TP) as possible with small number of False Positives (FP) 88.9% ✓
- 2. Find all cases with large value changes > 500%
- 3. Reduce the number of cases to be manually analysed (from 3000 to about 600) 80% 🗹

The same team could check 5 x the number of cases for inconsistent data \rightarrow HFS

Data Science Campus

- 100% 🗹

Then we looked at SLC survey data

- SLC also collects Income data, but uses a deterministic editing process
- No SLC Ground Truth, but we know which cases have been changed (Labels)
- Transfer Learning Can we use the trained LCF ML model?
- Objective:
 - Reduce: number of cases flagged by the deterministic SLC process, but do not receive a value change
 - Keep all cases with Changes
 - Keep all cases with large value changes

Proposed SLC Editing Pipeline

Results of 6084 SLC Cases – What is good enough?

Battle between Recall and Precision, they can't both be 100%

SLC Prediction Result								
Prediction Threshold	20%	25%	30%	35%	40%	45%	50%	Exp v65.1
Recall	99.7%	99.7%	99.3%	98.4%	97.4%	95.2%	92.6%	
Precision	34.5%	35.8%	38.7%	43.7%	52.2%	60.9%	69.4%	
F1-Score	51.2%	52.7%	55.7%	60.6%	67.9%	74.4%	79.3%	
TP	753	753	750	743	734	719	699	
FP	1432	1351	1188	956	674	462	308	
Burden cases filtered out				76%		82.6%	85.3%	
				736 of 96	8	800 of 968	826 of 968	

If prediction score > Threshold \rightarrow Case belongs to the Change Class

Objective:

- 1. Find as many True Positive (TP) as possible with small number of False Positives (FP) 95.2%
- 2. Find all cases with large value changes >300%
- 3. Reduce the number of cases manually checked, without receiving value changes (240 hours annually)

The same team could check 5 x the number of cases for inconsistent data \rightarrow HFS

Results show that ML can make data Editing more efficient Questions:

- What is good enough?
- What is it we want to achieve?
- How do we put this into production?
- How will ML fit into the data pipeline?

What about:

- Training Data
- Model/Data Drift
- Ethics?
- Explainability?

The Research and Implementation ML Workshop Part 1 will look at these in more detail

Technical ML sessions will look in more details how ML works and how to do it.

Thank you